Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
J Hepatocell Carcinoma ; 11: 813-838, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38737383

RESUMEN

Purpose: Hepatocellular carcinoma is the most common primary liver cancer, with poor prognosis. Complex immune microenvironment of the liver is linked to the development of HCC. PVALB is a calcium-binding protein which has been described as a cancer suppressor gene in thyroid cancer and glioma. Nevertheless, the role of PVALB in HCC is unknown. Materials and Methods: We obtained data from TCGA and GSE54236 datasets. MCP-counter, WGCNA and LASSO model were applied to identify PVALB. With UALCAN, MethSurv, and other websites, we probed the expression, methylation and survival of PVALB. LinkedOmics and GSEA were adopted for functional analysis, while TIMER, TISIDB, Kaplan-Meier plotter, TIDE databases were utilized to evaluate the relevance of PVALB to the tumor immune microenvironment and predict immunotherapy efficacy. TargetScan, DIANA, LncRNASNP2 databases and relevant experiments were employed to construct ceRNA network. Finally, molecular docking and drug sensitivity of PVALB were characterized by GeneMANIA, CTD, and so on. Results: PVALB was recognized as a gene associated with HCC and NK cell. Its expression was down-regulated in HCC tissue, which lead to adverse prognosis. Besides, the hypomethylation of PVALB was related to its reduced expression. Notably, PVALB was tightly linked to immune, and its reduced expression attenuated the anticancer effect of NK cells via the Fas/FasL pathway, leading to a adverse outcome. The lnc-YY1AP1-3/hsa-miR-6735-5p/PVALB axis may regulate the PVALB expression. Finally, we found immunotherapy might be a viable treatment option. Conclusion: In a word, PVALB is a prognostic indicator, whose low expression facilitates HCC progression by impacting NK cell infiltration.

2.
Aging (Albany NY) ; 16(8): 6954-6989, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38613802

RESUMEN

BACKGROUND: Glioma, a highly invasive and deadly form of human neoplasm, presents a pressing need for the exploration of potential therapeutic targets. While the lysosomal protein transmembrane 4A (LATPM4A) has been identified as a risk factor in pancreatic cancer patients, its role in glioma remains unexplored. METHODS: The analysis of differentially expressed genes (DEG) was conducted from The Cancer Genome Atlas (TCGA) glioma dataset and the Genotype Tissue Expression (GTEx) dataset. Through weighted gene co-expression network analysis (WGCNA), the key glioma-related genes were identified. Among these, by using Kaplan-Meier (KM) analysis and univariate/multivariate COX methods, LAPTM4A emerged as the most influential gene. Moreover, the bioinformatics methods and experimental verification were employed to analyze its relationships with diagnosis, clinical parameters, epithelial-mesenchymal transition (EMT), metastasis, immune cell infiltration, immunotherapy, drug sensitivity, and ceRNA network. RESULTS: Our findings revealed that LAPTM4A was up-regulated in gliomas and was associated with clinicopathological features, leading to poor prognosis. Furthermore, functional enrichment analysis demonstrated that LATPM4A played a role in the immune system and cancer progression. In vitro experiments indicated that LAPTM4A may influence metastasis through the EMT pathway in glioma. Additionally, we found that LAPTM4A was associated with the tumor microenvironment (TME) and immunotherapy. Notably, drug sensitivity analysis revealed that patients with high LAPTM4A expression were sensitive to doxorubicin, which contributed to a reduction in LAPTM4A expression. Finally, we uncovered the FGD5-AS1-hsa-miR-103a-3p-LAPTM4A axis as a facilitator of glioma progression. CONCLUSIONS: In conclusion, our study identifies LATPM4A as a promising biomarker for prognosis and immune characteristics in glioma.


Asunto(s)
Biomarcadores de Tumor , Neoplasias Encefálicas , Biología Computacional , Regulación Neoplásica de la Expresión Génica , Glioma , Proteínas de la Membrana , Humanos , Glioma/genética , Glioma/patología , Glioma/metabolismo , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Pronóstico , Transición Epitelial-Mesenquimal/genética , Línea Celular Tumoral , Masculino , Femenino , Redes Reguladoras de Genes , Perfilación de la Expresión Génica
3.
Nat Commun ; 15(1): 1893, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38424438

RESUMEN

Exciton transport in two-dimensional Ruddlesden-Popper perovskite plays a pivotal role for their optoelectronic performance. However, a clear photophysical picture of exciton transport is still lacking due to strong confinement effects and intricate exciton-phonon interactions in an organic-inorganic hybrid lattice. Herein, we present a systematical study on exciton transport in (BA)2(MA)n-1PbnI3n+1 Ruddlesden-Popper perovskites using time-resolved photoluminescence microscopy. We reveal that the free exciton mobilities in exfoliated thin flakes can be improved from around 8 cm2 V-1 s-1 to 280 cm2V-1s-1 by anchoring the soft butyl ammonium cation with a polymethyl methacrylate network at the surface. The mobility of the latter is close to the theoretical limit of Mott-Ioffe-Regel criterion. Combining optical measurements and theoretical studies, it is unveiled that the polymethyl methacrylate network significantly improve the lattice rigidity resulting in the decrease of deformation potential scattering and lattice fluctuation at the surface few layers. Our work elucidates the origin of high exciton mobility in Ruddlesden-Popper perovskites and opens up avenues to regulate exciton transport in two-dimensional materials.

4.
Aging (Albany NY) ; 16(1): 714-745, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38217544

RESUMEN

BACKGROUND: Uterine corpus endometrial carcinoma (UCEC) is one of the most common gynecological malignancies and its incidence and mortality continue apace. Lysosome-associated membrane protein 3 (LAMP3) is the third member of the LAMP family and its overexpression has been described to be involved in the progression of breast, ovarian and cervical cancers, but there has been an absence of research focusing on its role in UCEC. METHODS: WGCNA, TIMER, LinkedOmics, GSEA, Cytoscape, Kaplan-Meier plotter, GDC, GeneMANIA, cBioPortal, PDB, RNAinter, miRNet were applied in this research. RESULTS: Our study uncovers that LAMP3 possesses higher expression levels in UCEC compared to normal tissues, and this differential expression profile is tightly aligned with clinical and pathological features, and patients demonstrating high LAMP3 expression tend to have a shorter survival expectancy. The high expression of LAMP3 is modulated by the designated ceRNA network. LAMP3 is engaged in UCEC progression by functioning in a variety of biological roles of relevance to immunity. Furthermore, we predicted several prospering drugs based on drug sensitivity. Finally, we also constructed possible docking patterns of LAMP3 with ABCA3, RAB9A, and SGTB. CONCLUSIONS: LAMP3 is a formidable biomarker for UCEC and could be a prospective candidate for the diagnosis, treatment and prognostic assessment of UCEC.


Asunto(s)
Mama , Carcinoma Endometrioide , Humanos , Femenino , Pronóstico , Proteínas de Neoplasias , Proteína 3 de la Membrana Asociada a Lisosoma
5.
eNeuro ; 11(2)2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38242690

RESUMEN

Recent advancements in two-photon calcium imaging have enabled scientists to record the activity of thousands of neurons with cellular resolution. This scope of data collection is crucial to understanding the next generation of neuroscience questions, but analyzing these large recordings requires automated methods for neuron segmentation. Supervised methods for neuron segmentation achieve state of-the-art accuracy and speed but currently require large amounts of manually generated ground truth training labels. We reduced the required number of training labels by designing a semi-supervised pipeline. Our pipeline used neural network ensembling to generate pseudolabels to train a single shallow U-Net. We tested our method on three publicly available datasets and compared our performance to three widely used segmentation methods. Our method outperformed other methods when trained on a small number of ground truth labels and could achieve state-of-the-art accuracy after training on approximately a quarter of the number of ground truth labels as supervised methods. When trained on many ground truth labels, our pipeline attained higher accuracy than that of state-of-the-art methods. Overall, our work will help researchers accurately process large neural recordings while minimizing the time and effort needed to generate manual labels.


Asunto(s)
Neuronas , Neurociencias , Calcio , Redes Neurales de la Computación , Fotones , Procesamiento de Imagen Asistido por Computador
6.
J Phys Chem Lett ; 14(44): 10046-10053, 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37910791

RESUMEN

Low-dimensional lead halides have attracted increasing attention due to their potential application as single-component white-light emitters. These materials exhibit a complex emission spectral structure, ranging from free exciton narrowband emissions to self-trapped exciton broadband emissions. However, there is still no consensus for the underlying physical mechanism, especially in the spectrum with both narrowband and broadband emissions. Here we aim to elucidate the correlation between the emission spectrum and the exciton-phonon coupling in the mixed halide perovskite BA2Pb(BrxCl1-x)4. Our findings reveal that the interplay between exciton localization and delocalization results in an intermediate exciton-phonon coupling, leading to line shapes beyond the Huang-Rhys model for the self-trapped exciton. By incorporating the exciton motional effect, we establish a unified photophysical model describing the emission spectrum from the self-trapped exciton type to the free exciton type. These results provide essential insights into the mechanisms governing exciton-phonon interactions and offer ways to control white-light emission in two-dimensional perovskites.

7.
Sci Adv ; 9(39): eadi9347, 2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37774031

RESUMEN

Phonon-assisted photon upconversion holds great potential for numerous applications, e.g., optical refrigeration. However, traditional semiconductors face energy gain limitations due to thermal energy, typically achieving only ~25 milli-electron volts at room temperature. Here, we demonstrate that quasi-two-dimensional perovskites, with a soft hybrid organic-inorganic lattice, can efficiently upconvert photons with an anti-Stokes shift exceeding 200 milli-electron volts. By using microscopic transient absorption measurements and density functional theory calculations, we explicate that the giant energy gain stems from strong lattice fluctuation leading to a picosecond timescale transient band energy renormalization with a large energy variation of around ±180 milli-electron volts at room temperature. The motion of organic molecules drives the deformation of inorganic framework, providing energy and local states necessary for efficient upconversion within a time constant of around 1 ps. These results establish a deep understanding of perovskite-based photon upconversion and offer previously unknown insights into the development of various upconversion applications.

8.
Aging (Albany NY) ; 15(16): 8155-8184, 2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37602882

RESUMEN

Glioma is the most common primary intracranial tumor in the central nervous system, with a high degree of malignancy and poor prognosis, easy to recur, difficult to cure. The mutation of Retinitis Pigmentosa 2 (RP2) can cause retinitis pigmentosa, it is a prognostic factor of osteosarcoma, however, its role in glioma remains unclear. Based on the data from TCGA and GTEx, we identified RP2 as the most related gene for glioma by WGCNA, and used a series of bioinformatics analyses including LinkedOmics, GSCA, CTD, and so on, to explore the expression of RP2 in glioma and the biological functions it is involved in. The results showed that RP2 was highly expressed in glioma, and its overexpression could lead to poor prognosis. In addition, the results of enrichment analysis showed that RP2 was highly correlated with cell proliferation and immune response. And then, we found significant enrichment of Macrophages among immune cells. Furthermore, our experiments have confirmed that Macrophages can promote the development of glioma by secreting or influencing the secretion of some cytokines. Moreover, we investigated the influence of RP2 on the immunotherapy of glioma and the role of m6A modification in the influence of RP2 on glioma. Ultimately, we determined that RP2 is an independent prognostic factor that is mainly closely related to immune for glioma.


Asunto(s)
Neoplasias Óseas , Glioma , Retinitis Pigmentosa , Humanos , Pronóstico , Biomarcadores , Proteínas de la Membrana , Proteínas de Unión al GTP
9.
Aging (Albany NY) ; 15(13): 6179-6211, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37400985

RESUMEN

Hepatocellular carcinoma (HCC) is an ongoing challenge worldwide. Zinc finger protein 765 (ZNF765) is an important zinc finger protein that is related to the permeability of the blood-tumor barrier. However, the role of ZNF765 in HCC is unclear. This study evaluated the expression of ZNF765 in hepatocellular carcinoma and the impact of its expression on patient prognosis based on The Cancer Genome Atlas (TCGA). Immunohistochemical assays (IHC) were used to examine protein expression. Besides, a colony formation assay was used to examine cell viability. We also explored the relationship between ZNF765 and chemokines in the HCCLM3 cells by qRT-PCR. Moreover, we examined the effect of ZNF765 on cell resistance by measurement of the maximum half-inhibitory concentration. Our research revealed that ZNF765 expression in HCC samples was higher than that in normal samples, whose upregulation was not conducive to the prognosis. The results of GO, KEGG, and GSEA showed that ZNF765 was associated with the cell cycle and immune infiltration. Furthermore, we confirmed that the expression of ZNF765 had a strong connection with the infiltration level of various immune cells, such as B cells, CD4+ T cells, macrophages, and neutrophils. In addition, we found that ZNF765 was associated with m6A modification, which may affect the progression of HCC. Finally, drug sensitivity testing found that patients with HCC were sensitive to 20 drugs when they expressed high levels of ZNF765. In conclusion, ZNF765 may be a prognostic biomarker related to cell cycle, immune infiltration, m6A modification, and drug sensitivity for hepatocellular carcinoma.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Pronóstico , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Ciclo Celular , Biomarcadores
10.
PLoS Comput Biol ; 19(6): e1011167, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37279242

RESUMEN

Neural ensembles are found throughout the brain and are believed to underlie diverse cognitive functions including memory and perception. Methods to activate ensembles precisely, reliably, and quickly are needed to further study the ensembles' role in cognitive processes. Previous work has found that ensembles in layer 2/3 of the visual cortex (V1) exhibited pattern completion properties: ensembles containing tens of neurons were activated by stimulation of just two neurons. However, methods that identify pattern completion neurons are underdeveloped. In this study, we optimized the selection of pattern completion neurons in simulated ensembles. We developed a computational model that replicated the connectivity patterns and electrophysiological properties of layer 2/3 of mouse V1. We identified ensembles of excitatory model neurons using K-means clustering. We then stimulated pairs of neurons in identified ensembles while tracking the activity of the entire ensemble. Our analysis of ensemble activity quantified a neuron pair's power to activate an ensemble using a novel metric called pattern completion capability (PCC) based on the mean pre-stimulation voltage across the ensemble. We found that PCC was directly correlated with multiple graph theory parameters, such as degree and closeness centrality. To improve selection of pattern completion neurons in vivo, we computed a novel latency metric that was correlated with PCC and could potentially be estimated from modern physiological recordings. Lastly, we found that stimulation of five neurons could reliably activate ensembles. These findings can help researchers identify pattern completion neurons to stimulate in vivo during behavioral studies to control ensemble activation.


Asunto(s)
Neuronas , Corteza Visual , Ratones , Animales , Neuronas/fisiología , Corteza Visual/fisiología
11.
Small ; 19(40): e2303466, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37267936

RESUMEN

Void volume fraction (VVF) is a global measurement frequently used to characterize the void space of granular scaffolds, yet there is no gold standard by which to measure VVF in practice. To study the relationship  between VVF and particles of varying size, form, and composition, a library of 3D simulated scaffolds is used. Results reveal that relative to particle count, VVF is a less predictable metric across replicate scaffolds. Simulated scaffolds are used to explores the relationship between microscope magnification and VVF, and recommendations are offered for optimizing the accuracy of approximating VVF using 2D microscope images. Lastly, VVF of hydrogel granular scaffolds is measured while varying four input parameters: image quality, magnification, analysis software, and intensity threshold. Results show that VVF is highly sensitive to these parameters. Overall, random packing produces variation in VVF among granular scaffolds comprising the same particle populations. Furthermore, while VVF is used to compare the porosity of granular materials within a study, VVF is a less reliable metric across studies that use different input parameters. VVF, a global measurement, cannot describe the dimensions of porosity within granular scaffolds, and the work supports the notion that more descriptors are necessary to sufficiently characterize void space.

12.
Cell Rep Methods ; 3(4): 100453, 2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-37159670

RESUMEN

Visual processing in the retina depends on the collective activity of large ensembles of neurons organized in different layers. Current techniques for measuring activity of layer-specific neural ensembles rely on expensive pulsed infrared lasers to drive 2-photon activation of calcium-dependent fluorescent reporters. We present a 1-photon light-sheet imaging system that can measure the activity in hundreds of neurons in the ex vivo retina over a large field of view while presenting visual stimuli. This allows for a reliable functional classification of different retinal cell types. We also demonstrate that the system has sufficient resolution to image calcium entry at individual synaptic release sites across the axon terminals of dozens of simultaneously imaged bipolar cells. The simple design, large field of view, and fast image acquisition make this a powerful system for high-throughput and high-resolution measurements of retinal processing at a fraction of the cost of alternative approaches.


Asunto(s)
Microscopía , Neuronas , Calcio de la Dieta , Colorantes , Aplicación de la Ley
13.
Nano Lett ; 23(9): 3716-3723, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37125916

RESUMEN

Out-of-plane (OP) exciton-based emitters in two-dimensional semiconductor materials are attractive candidates for novel photonic applications, such as radially polarized sources, integrated photonic chips, and quantum communications. However, their low quantum efficiency resulting from forbidden transitions limits their practicality. In this work, we achieve a giant enhancement of up to 34000 for OP exciton emission in indium selenide (InSe) via a designed Ag nanocube-over-Au film plasmonic nanocavity. The large photoluminescence enhancement factor (PLEF) is attributed to the induced OP local electric field (Ez) within the nanocavity, which facilitates effective OP exciton-plasmon interaction and subsequent tremendous enhancement. Moreover, the nanoantenna effect resulting from the effective interaction improves the directivity of spontaneous radiation. Our results not only reveal an effective photoluminescence enhancement approach for OP excitons but also present an avenue for designing on-chip photonic devices with an OP dipole orientation.

14.
Aging (Albany NY) ; 15(7): 2631-2666, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-37059586

RESUMEN

Hepatocellular carcinoma (HCC) is the most common subtype of liver cancer, with a high morbidity and low survival rate. Rho GTPase activating protein 39 (ARHGAP39) is a crucial activating protein of Rho GTPases, a novel target in cancer therapy, and it was identified as a hub gene for gastric cancer. However, the expression and role of ARHGAP39 in hepatocellular carcinoma remain unclear. Accordingly, the cancer genome atlas (TCGA) data were used to analyze the expression and clinical value of ARHGAP39 in hepatocellular carcinoma. Further, the LinkedOmics tool suggested functional enrichment pathways for ARHGAP39. To investigate in depth the possible role of ARHGAP39 on immune infiltration, we analyzed the relationship between ARHGAP39 and chemokines in HCCLM3 cells. Finally, the GSCA website was used to explore drug resistance in patients with high ARHGAP39 expression. Studies have shown that ARHGAP39 is highly expressed in hepatocellular carcinoma and relevant to clinicopathological features. In addition, the overexpression of ARHGAP39 leads to a poor prognosis. Besides, co-expressed genes and enrichment analysis showed a correlation with the cell cycle. Notably, ARHGAP39 may worsen the survival of hepatocellular carcinoma patients by increasing the level of immune infiltration through chemokines. Moreover, N6-methyladenosine (m6A) modification-related factors and drug sensitivity were also found to be associated with ARHGAP39. In brief, ARHGAP39 is a promising prognostic factor for hepatocellular carcinoma patients that is closely related to cell cycle, immune infiltration, m6A modification, and drug resistance.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Biomarcadores , Carcinoma Hepatocelular/genética , Ciclo Celular , Neoplasias Hepáticas/genética , Pronóstico
15.
Aging (Albany NY) ; 15(7): 2734-2771, 2023 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-37059591

RESUMEN

BACKGROUND: Hepatocellular carcinoma represents the most common primary malignancy of all liver cancer types and its prognosis is usually unsatisfactory. TSEN54 encodes a protein constituting a subunit of the tRNA splicing endonuclease heterotetramer. Previous researches concentrated on the contribution of TSEN54 in pontocerebellar hypoplasia, but no studies have yet reported its role in HCC. METHODS: TIMER, HCCDB, GEPIA, HPA, UALCAN, MEXPRESS, SMART, TargetScan, RNAinter, miRNet, starBase, Kaplan-Meier Plotter, cBioPortal, LinkedOmics, GSEA, TISCH, TISIDB, GeneMANIA, PDB, GSCALite were applied in this research. RESULTS: We identified the upregulation of TSEN54 expression in HCC and related it to multiple clinicopathological features. Hypomethylation of TSEN54 was closely associated with its high expression. HCC sufferers who held high TSEN54 expression typically had shorter survival expectations. Enrichment analysis showed the involvement of TSEN54 in the cell cycle and metabolic processes. Afterward, we observed that TSEN54 expression level had a positive relationship to the infiltration level of multiple immune cells and the expression of several chemokines. We additionally identified that TSEN54 was related to the expression level of several immune checkpoints and TSEN54 was linked to several m6A-related regulators. CONCLUSIONS: TSEN54 is a prognostic marker of HCC. TSEN54 could become a prospective candidate for HCC diagnosis and therapy.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/genética , Ciclo Celular , División Celular , Biomarcadores , Pronóstico , Biomarcadores de Tumor/genética , Endorribonucleasas
16.
Aging (Albany NY) ; 15(8): 2937-2969, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-37074800

RESUMEN

PURPOSE: Hepatocellular carcinoma (HCC) is a prevalent tumor with high morbidity, and an unfavourable prognosis. FARSB is an aminoacyl tRNA synthase, and plays a key role in protein synthesis in cells. Furthermore, previous reports have indicated that FARSB is overexpressed in gastric tumor tissues and is associated with a poor prognosis and tumorigenesis. However, the function of FARSB in HCC has not been studied. RESULTS: The results showed that FARSB mRNA and protein levels were upregulated in HCC and were closely related to many clinicopathological characteristics. Besides, according to multivariate Cox analysis, high FARSB expression was linked with a shorter survival time in HCC and may be an independent prognostic factor. In addition, the FARSB promoter methylation level was negatively associated with the expression of FARSB. Furthermore, enrichment analysis showed that FARSB was related to the cell cycle. And TIMER analysis revealed that the FARSB expression was closely linked to tumor purity and immune cell infiltration. The TCGA and ICGC data analysis suggested that FARSB expression is greatly related to m6A modifier related genes. Potential FARSB-related ceRNA regulatory networks were also constructed. What's more, based on the FARSB-protein interaction network, molecular docking models of FARSB and RPLP1 were constructed. Finally, drug susceptibility testing revealed that FARSB was susceptible to 38 different drugs or small molecules. CONCLUSIONS: FARSB can serve as a prognostic biomarker for HCC and provide clues about immune infiltration, and m6A modification.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Mycobacterium tuberculosis , Humanos , Carcinoma Hepatocelular/genética , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Pronóstico , Neoplasias Hepáticas/genética , Biomarcadores
18.
Aging (Albany NY) ; 14(18): 7416-7442, 2022 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-36098680

RESUMEN

Kidney renal clear cell carcinoma (KIRC) is a common and invasive subtype of renal tumors, which has poor prognosis and high mortality. MND1 is a meiosis specific protein that participates in the progress of diverse cancers. Nonetheless, its function in KIRC was unclear. Here, TIMER, TCGA, GEO databases and IHC found MND1 expression is upregulated in KIRC, leading to poor overall survival, and MND1 can serve as an independent prognostic factor. Moreover, enrichment analysis revealed the functional relationship between MND1 and cell cycle, immune infiltration. EdU and transwell assays confirmed that MND1 knockdown surely prohibited the proliferation, migration, and invasion of KIRC cells. Additionally, immune analysis showed that MND1 displayed a strong correlation with various immune cells. Interference with MND1 significantly reduces the expression of chemokines. TCGA and GEO databases indicated that MND1 expression is significantly related to two m6A modification related gene (METTL14, IGF2BP3). Finally, the drug sensitivity analysis revealed 7 potentially sensitive drugs for KIRC patients with high MND1 expression. In conclusion, MND1 can be used as a prognostic biomarker for KIRC and provides clues regarding cell cycle, immune infiltrates and m6A. Sensitive drugs may be an effective treatment strategy for KIRC patients with high expression of MND1.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Biomarcadores de Tumor/genética , Carcinoma de Células Renales/patología , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Humanos , Riñón/patología , Neoplasias Renales/patología , Pronóstico
19.
Biophys J ; 121(21): 4166-4178, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36151721

RESUMEN

Channelrhodopsins are a promising toolset for noninvasive optical manipulation of genetically identifiable neuron populations. Existing channelrhodopsins have generally suffered from a trade-off between two desired properties: fast channel kinetics and large photocurrent. Such a trade-off hinders spatiotemporally precise optogenetic activation during both one-photon and two-photon photostimulation. Furthermore, the simultaneous use of spectrally separated genetically encoded indicators and channelrhodopsins has generally suffered from non-negligible crosstalk in photocurrent or fluorescence. These limitations have hindered crosstalk-free dual-channel experiments needed to establish relationships between multiple neural populations. Recent large-scale transcriptome sequencing revealed one potent optogenetic actuator, the channelrhodopsin from species Chloromonas oogama (CoChR), which possessed high cyan light-driven photocurrent but slow channel kinetics. We rationally designed and engineered a kinetic-optimized CoChR variant that was faster than native CoChR while maintaining large photocurrent amplitude. When expressed in cultured hippocampal pyramidal neurons, our CoChR variant improved high-frequency spiking fidelity under one-photon illumination. Our CoChR variant's blue-shifted excitation spectrum enabled simultaneous cyan photostimulation and red calcium imaging with negligible photocurrent crosstalk.


Asunto(s)
Luz , Optogenética , Channelrhodopsins/genética , Optogenética/métodos , Neuronas/fisiología , Células Piramidales
20.
Nano Lett ; 22(14): 5651-5658, 2022 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-35786976

RESUMEN

Edge states of two-dimensional transition-metal dichalcogenides (TMDCs) are crucial to quantum circuits and optoelectronics. However, their dynamics are pivotal but remain unclear due to the edge states being obscured by their bulk counterparts. Herein, we study the state-resolved transient absorption spectra of ball-milling-produced MoS2 nanosheets with 10 nm lateral size with highly exposed free edges. Electron energy loss spectroscopy and first-principles calculations confirm that the edge states are located in the range from 1.23 to 1.78 eV. Upon above bandgap excitations, excitons populate and diffuse toward the boundary, where the potential gradient blocks excitons and the edge states are formed through interband transitions within 400 fs. With below bandgap excitations, edge states are slowed down to 1.1 ps due to the weakened valence orbital coupling. These results shed light on the fundamental exciton dissociation processes on the boundary of functionalized TMDCs, enabling the ground work for applications in optoelectronics and light-harvesting.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...